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Abstract The dynamics and thermodynamic propeiiies of the sineGordon system with the 
Kac-Baker long-range interaction are cansidered. The dispersion relations are derived and a 
closed-form kink solution is obtained. It appears that the kink width and energy increase as the 
range of interaction increases. Using a suitable conversion of the functional iotega!. the transfer 
matrix techniques are used to evaluate the classical thermodynamic properties of the model in 
the low-tempemure regime. They are seen to depend strongly on the range of interaction. 

1. Introduction 

The dynamics and thermodynamics of non-linear lattices with long-range interaction 
potential have received a great deal of attention in the past decade [1-12]. Such attention 
is due to the fact that, in certain real materials, the interparticle forces extend further than 
the nearest-neighbour interactions, for instance, in metal or ferroelectric chains 161 and in 
adsorption systems where adatomic charges create Coulomb repulsion forces, dipoledipole 
interaction and direct or indirect interaction [7]. 

The long-range (or non-local) interaction potential is generally complicated, but some 
interesting forms are known and have been studied: power-law interaction [3,7], Lennard- 
Jones long-range coupling [Z] and exponential interaction such as Kac-Baker potential [13]. 
This last potentia1 is described in section 2 of the present paper. 

The interplay between the long-range interaction and non-linearity has revealed 
interesting new phenomena from both the mathematical and physical points of view: the 
generation of new types of solitons and the coexistence of supersonic and subsonic solitons 
in  a given lattice [2,4,14, 151; the blow-up or the splitting of solitons due to competition 
(frustration) between the first- and second-nearest interactions [14,15]; the explanation of 
the observed finite exponent that appears on the density of solitons at zero temperature [3]; 
the increase of soliton width with the range of interaction [1,4]; the decreasing behaviour of 
the Peierls-Nabarro barrier associated with kinks in the discrete lattice [8, 161; and finally 
the decrease of kink free energy and density when the range of interaction increases [9]. 

Owing to the mathematical complexity, the connection between the long-range 
interaction potential and the widely used s inao rdon  (SG) substrate potential has received 
limited investigation. To ow knowledge, the first study dealing with such a connection was 
carried out by Pokrovsky and Virosztek 131, who used an integral operator that contains 
both the short-range (local) and the long-range (non-local) interactions to analyse the 
problem. as mentioned here before, of the finite exponent observed in the soliton density at 
zero temperature. Braun et ol 171 have considered the Frenkel-Kontorova systems with 

0953-898494/234277+12$19.50 @ 1994 IOP Publishing Ltd 4277 



4278 

power-law interaction and Kac-Baker potential. Taking the Kac-Baker interactions as 
perturbations, they found a renormalization of kink parameters. In a letter published recently 
1171, we have derived an implicit form for topological solitons in a SG system with the 
Kac-Baker potential. The thermodynamic properties and the existence of other types of 
excitations were still to be analysed. This constitutes the aim of the present paper. 

In section 2,  we review the model and present the resulting linear and non-linear 
excitations. The dispersion relations for phonons are derived and additional developments 
for the kink solutions are given. In section 3, the transfer integral techniques are used to 
derive the partition function by suitably converting the functional integral into an equivalent 
nearest-neighbours problem. From this, we find the low-temperature properties of the 
system. These properties (free energy, internal energy, specific heat, entropy and density of 
kinks) are discussed with respect to the range of interaction. The concluding remarks and 
suggestions for future investigations are reported in section 4. 

J R Kenne er a1 

2. Model and excitations 

We consider a system of particles of mass m placed on an infinite one-dimensional lattice. 
Each particle is lying on an on-site potential V(@i).  The Hamiltonian of  such a system is 
then given by 

where i, j are the lattice points; q4i and 6; are respectively the linear displacement and the 
velocity of the ith particle; m is the mass of the particle; and Vii is the Kac-Baker potential 
1231 in which the interaction between particles falls off exponentially as the separation 
increases. The latter is defined as 

(2 )  

where the coefficient c is the elastic constant of the lattice (or the exchange constant in 
magnets), and the absolute difference li - j l  measures the distance between sites i and j .  
Experimentally, one can relate the parameter r to the number of neighbouring interactions 
[I I]. Particular interest devoted to the potential (2) is reported in 191 and [ 171. The substrate 
potential V(&)  is of the sine-Cordon (sG) type, that is 

vij = [C(I - r)/2r]rli-’l 

V ( @ i )  = a[l - co~(W@i/b)] (3) 

where (Y is the amplitude of the sc substrate potential and b is the lattice constant. 
Putting ui = 2?r&/b, the equation of motion that follows from (1). (2)  and (3) is 

MU; + 01 sin ui + 2Cui = Li (4) 

where 

M = bzm/4n2 C = b2c/4x2 

and the auxiliary quantity Li defined as 



Dynamics and thermodynmks of sine-Gordon system 4279 

satisfies the following recursive relation 

(r + r-’)Li = ~ , + 1  + L,-] + [ ~ ( i  - r)/r1(ui+1 + ui-1 - >U,). (6) 

In the continuum limit, the discrete set of equations (4) reduces to the partial differential 
equation 

Mrb’uba + arb2(sin u ) ~  + C(1 + r )b2ub  - (1 - r)’(Muzr + a sin U) = 0. (7) 

The 2x (or U) stands for the partial spatial (or time) derivative. For r = 0, equation (7) 
reduces to the well known continuum SG equation [19].  An equation similar to (7) was 
also derived by Roseneau [SI for a weakly non-linear one-dimensional lattice with N 
neighbouring interactions by using a method that correctly preserves the essential features of 
the discrete system. But no special link was assumed between the coupling coefficients of 
different neighbouring interactions. Consequently, the coefficient of the U&= term, as well 
as that of the non-linear interaction potential term, were given as sums over the N interacting 
particles. But, in our equation (7), the coefficient of u b a  depends on the parameter r ,  which 
measures the range of interaction. This is due to the exponential form (link) of the elastic 
coupling coefficients between all the particles of the lattice. 

The discrete set of equations (4) and its continuum form (7) have two trivial solutions, 
which correspond to the unstable state ut = (Zn + 1)n (or U = (2n + 1)x) and the stable 
state U, = 2nz (or U = %a), where n is an integer. These equations (4) and (7) also admit 
small-amplitode solutions (the so-called phonons) and large-amplitude solutions (the kink 
and antikink) [17]. 

2.1. Discrete and continuum phonons 

2.1.1. Oscillationsaboutui = 2na. This case corresponds to the state where all the particles 
are lowered to the bottom of the substrate potential wells and because of small disturbances 
(e.g. small thermal fluctuations) undergo oscillatory motion with displacements 

ui = a sin(kbi - w t t )  ( 8 4  

where a is the amplitude, k the wavenumber and OK the oscillatory frequency. To find the 
dispersion relation to this phonon state, we use the recursive relation (4) in equation (6) to 
obtain in the linear order 

(1  +r*)Miii - r ~ ( u i + l  +ii-l) = [C(I +r)+ar](uc+l +ui-l) - [ 2 ~ ( 1  + r ) + a ( l  +r2 ) ]u , .  
(8b) 

Inserting (80) into (8b), the dispersion relation becomes 

w;=l 2 C ( 1 + r ) + 2 o r ] c o s ( k b ) - 2 C ( 1 + r ) - a ( l  + r Z )  
M[2r cos(kb) - (1 + r’)] 

When the wavenumber k is small, equation (94 takes the form 

(kb)*[C(l+ r )  t ra] +a( 1 - r ) Z  
M[(I - r)Z + r(kb)2] 

oJk = 
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Figure 1. Dispersion relation for various values of the intemction parameter r (C = 3, a = 2, 
M = I) .  

which is the continuum dispersion relation of the model, also obtainable by linearization 
of equation (7). This relation (96) shows that 0: is always positive. When r 4 0, the 
relations ( 9 ~ )  and (9b) reduce to the discrete and continuum relations of the SG chain with 
the first-neighbour interaction [19]. 

In figure 1, we plot in the first Brillouin zone the dispersion relation for various values 
of the interaction parameter r. This figure leads to the following comments: In the domain 
of wavenumber k near k = 0, it is seen that, for a given wavenumber, the wave dispersion 
increases when r increases. This is in agreement with the fact that, in the continuum limit, 
the long range increases the dispersion of waves [2]. However, in the second domain 
near k = n/b  (the discrete limit), an inverse phenomenon is observed. This leads to the 
decrease of dispersion when the range of interaction decreases. The shape of this figure 
is qualitatively similar to that of the experimental dispersion relation in plumb where the 
long-range interaction exists [ 111. 

2.1.2. Oscillation about ui = (2n + 1)n. This corresponds to the situation in which all the 
particles sit in the tops of the wells. Then we can write ui = (2n + I)n + Vi, where Vi is 
a linear wave. Substitution in equation (8) leads to 

(1 + r Z ) M q  - r M ( q + ,  +Vi-,) = [C(I + r )  -ar1(!4+1 +v~-,)-[zc(~ + r ) - a ( ~  +rZ)lvi  
(10) 

and the discrete dispersion relation in this state is then given by 

When k + 0, this quation reduces to 

(kb)*[C(l + r )  - m] - a(l - r ) Z  
M[(I  - r)2+ r(kb)Z] 

0: = 
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For the stability of linear oscillations about the top of SG potential wells, a$ should be 
positive. This leads to the following inequality 

a ( 1  - r)2 
b2[C(l + r )  - ral 

k2 > 

for the wavenumber k (assuming that the right-hand side of (1 IC) is positive, this requires 
c > a). 

2.2. Large-amplitude solutions 

The large-amplitude excitations in the displacive limit, corresponding to solutions of 
equation (7). have been derived recently [17] using the procedure of [I]. They correspond 
to the state where the particles have enough energy to pass gradually over the barrier of 
the substrate potential. These excitations called kinks or antikinks have the closed-form 
expression (see [17]) 

x - ut (1 + u)’/2 - 
2 

k-- 
5 

2 sin2(u/2) 
2 + 2 ( 1  +2u)cos2(u/2) + 4 { ( 1  +u)[1 +ucos2(~/2)]cos2(u/2)}’~z 

xln ( 
- U ‘ / ’ I ~ [ I ~ ( U [ I  - U  cos2(u/2)] COS~(U/Z)) ’ /~  - 2[1+ 2u C O S ~ ( U / ~ ) I ~  

(1b) 

where 

f 2  = [C(I + r)b2 - mu2(1 - r ) 2 ~ / a ( l  - r)’ 

U = rab2/[C(l + r)b2 - mv2(1 - r)’]. 

( 126) 

and U is a positive parameter defined as 

( 1 W  

In equation (12a) the + sign corresponds to a kink while the - sign corresponds to an 
antikink. 

As r + 0, U + 0, and the implicit solution (12) reduces to the standard SG kink 

(13) 

with ci = Cb2/M and d2 = Cb2 fa. 
The parameter f gives a measure of the soliton width. It increases with r and the soliton 

slowly disappears. Since the kink width f should be greater than the lattice spacing b (in 
view of the continuum approximation to be satisfied), the soliton equation (12b) requires 
that C > a and the parameter U therefore varies from zero to one. 

In the limit r -+ 1 the soliton extension goes to infinity (diverges as (1 - r ) - ’ )  and 
U + 7r for all x .  This corresponds to the case in which all the particles sit at the top of the 
well of the SG substrate potential and have maximum energy. At this point of the substrate 
potential, they can oscillate with the dispersion relation ( 1  la). 

The stability of kinks has appeared to be an analytically difficult task owing to the 
complexity of the analysis. However, the Goldstone mode was obtained and other particular 
cases were studied [17]. 
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2.3. Energy of the kink 

Using the auxiliary quantity L,, equation (4) and going to the continuum limit, the total 
energy E$. of the soliton has the form (see 1171) 

J R Kenne‘ et a1 

4Mu? ( I+u)  

+ - ( ) tan-’ (q F o(l-0)  1 - U  
(14) 

Analysis of equation (14) shows that E, goes to infinity as I -+ 1 .  This state, as 
mentioned earlier, is energetically less favourabIe for the existence of the soliton since all 
the particles sit at the top of the well (an unstable position). The variation of the soliton 
energy shows that E, increases with r (see [ 171). 

When r 3 0, U remains a small parameter, and we can expand equation (14) in powers 
of 6. To second order, we have 

E, = ac(8 - $U + $ u ) ’ ~ )  + (Mv*/c) (S  + 4u + u’’~ + $U’). (15) 

In the limit r = 0, E reduces to 

E, = 8b(0rC)’~*/(l - V*/C~) ’ ’ *  (16) 

which corresponds to the well known relativistic kink energy of the SG model with nearest- 
neighbour interactions [ 191. 

3. Statistical mechanics 

In this section we concentrate on the thermodynamic quantities of the long-range interaction 
model. The partition function and the associated properties such as the free energy, the 
internal energy, the specific heat and the entropy are derived and their dependence on the 
long-range parameter r is discussed. To this aim, we use the transfer matrix techniques 1201 
to reduce the functional intkgration to a one-particle quantum-mechanical problem. Owing 
to the difficulties of dealing with interactions of  various types of excitations, in the long- 
range interaction model (kink-kink, kink-phonon or kink-breather interactions), we restrict 
our analysis to the case of a gas of independent kinks (antikinks) and phonon excitations. 

The partition function can be written as a functional integral of the form 

where P, = miri is the momentum of the ith particle, p = ljKBT is the Boltunann facior 
and N is the number of particles, 

Since our analysis is for a classical field. equation (17) can be separated into a product of 
the kinetic and configurational partition function Z, and 2,. The kinetic part Zp associated 
with the N momenta Pi of the particles, can easily be evaluated and yields 

Z, = ( 2 7 1 M / f i ) ~ / ~ .  (18) 
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The configurational partition function Z, is defined as 

where W ( u i ) ,  standing for the potential energy of a given particle in a system with long- 
range interaction, has the form 

1 C( l  - r )  
2 2r i ~ j  

rl’-jl(ui - u j )  2 . W(uJ  = ff( 1 - cos Ui) + - 

We can rewrite Z, according to (20) as 

with W’(ui)  = a(l - cosui) + Cuf and K = pC. 
Using the auxiliary field variable y, as defined in [I], the partition function can be 

transformed to the equivalent nearest-neighbours problem. The kernel function is given by 

(22) 

Since the kernel is not symmetric in y and y‘, we express it in terms of left and right 

G(y, y‘) = expI-pW’(y - ry‘) + K(1 - r)y’(y - ry’)l. 

eigenvectors. Assuming the normalization condition, the. eigenvalues h, are defined as 

where @, are eigenvectors. 
In the thermodynamic limit, we obtain 

Z“ =kl 

where ho is the largest eigenvalue of equation (23). 
When r is equal to zero, equation (23) reduces to 

+m 
hm$m(y) = La dy’ exp[-a’(l -COSY) - KY‘ + Ky~’l$,(y’) (25) 

where ff’ = pa. The kernel is not symmetric, and we  define the transformation 

$m(y) =exp[a‘(l -cosy)+ iKyZIhm(y).  (26) 

After substitution in equation (Z), it appears that h,(y) satisfies 

+W 

hmh,(y) = exp[-or‘(l -cosy)] dy‘ exp[-iK(y - y‘)*]h,(y‘). (27) 

This is the integral equation for the short-range problem. It can be easily converted into an 
effective Schrodinger equation valid for small B (e = ol/C). 
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As the symmetry of the kernel is not assumed for finite r .  the simplification is impossible. 
To evaluate the low-temperature properties, we define the transformation 

r&(y) = exp(ol’(1 -r)’cosy -~K1rZ - + ( I  +r)]yz]. 

After substitution in equation (23). i t  appears that h,(y) satisfies 

(28) 

l , h , ( y )  = /cwdy‘exp(-ol’[l - cos(y‘ - r y ) ]  +ol‘(l - r)’(cosy’ - cosy)] 
-m 

x exp[-iK(1 $. r)(y‘- y)21h,(y‘). (29) 

In this relation, only the term cos()” - ry) is not symmetric. This is a consequence 
of the transformation (28) which has the property of making the kemel as symmetric as 
possible (for instance, the kernel is symmetric for the limiting cases r = 0 and r = 1). 
Assuming, therefore, the asymmetry of the kernel (at least for small values of r ) ,  we derive 
the Schrodinger equation. Following the method of Sarker and Krumhansl [I], we obtain 

h, (x )  = E m A m ( X )  
I dZ 

2M” dx2 

where x = (1 - r ) y ,  M’ =@$a and 50 is the soliton width with the zero velocity U = 0. 
The largest eigenvalue A0 of the integral equation corresponds to the ground-state energy 

of equation (30). It can be related to the eigenvalue of the Schrodinger equation by the 
formula 

A, = (zK~)”’ exp(-jkm) (31) 

where 

q = [K( I  - r)]-’. 

Since the potential in equation (30) is periodic with period 2x. the above equation is 
the familiar Hill (or Mathieu) equation of the band theory of solids. A similar equation 
was also analysed by Gupta and Sutherland for a general periodic potential [21]. In the 
low-temperature regime >> l), the eigenspectrum will be ‘tunnel-split’ to remove 
degeneracy from the eigenstates of~individual wells. If Eo(T) is the lowest level in a single 
isolated well, then 

€0 = &(T) - to (32) 

where to is the tunnelling component. which is given by a standard Wentzel-Kramer- 
Brillouin (WKE) formula [I91 

to = [Eo(T)/aIexp[-I(T)l 

with 
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where XI and Xz define the ‘turning points’. At sufficiendy low temperature, Eo(T) is 
approximated by the lowest harmonic oscillator level. 

Asymptotic expansions are available for the position and width of the bands of 
equation (30). For 4M” >> 1 ,  the bottom of the lowest band is given by [22,23] 

where E,’” = Sru5 is the soliton rest energy. The first term of the power series represents 
the phonon contribution, while the higher-order terms are anharmonic contributions. 

In the low-temperature regime, the free energy f per particle is given by 

@f = -4  In(~ir/B) - h h o .  (35) 

Using equations (31), (34) and ( 3 9 ,  we obtain 

where WO = (r~/hf)’/~. 
The free energy can be separated into two parts 

and 

Equations (37) and (38) are respectively the phonon and the tunnelling contributions to 
the free energy The tunnelling part is due to the presence of kinks and small anharmonic 
oscillations. 

All other thermodynamic quantities can be derived from equation (36). The internal 
energy Ui, and the specific heat C. per particle are respectively given by 

where n? i s  the total density of kinks, which has the form 
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The entropy S per particle is 

The expressions (36) to (42) give the low-temperature thermodynamic properties of the 
sineCordon system with long-range interaction potential of the Kac-Baker type. Their 
dependence on the long-range interaction parameter is discussed below. 

As it appears from these expressions, and as it is well known since the basic works of 
Krumhansl and Schrieffer 1241 and C u r i e  etal 1191, the presence of the kink is characterized 
by the terms containing the kink rest energy 

The analysis for a given temperature of equations (393-(42) as a function of r shows that 
Vi,, C, and n r  are decreasing functions of r while the entropy is an increasing function. 
The decreasing behaviour of the kink density can be understood if we appeal to the fact that 
an increase of the range of interaction leads to an increase of the kink width. Consequently, 
compared to the state where the kink width is small (and the number of kinks large), 
there appears more disorder and the entropy of system increases. It is also seen, as can 
be expected, that these thermodynamic properties increase with the temperature. Figure 2 
shows the variation of the specific heat C, versus Ole temperature for different values of 
the interaction parameter. 

KoT 

Fiyre 2. Specific heal vents the temperature for various values of r (C = 3, LY = 2, M = I ) .  

4. Conclusion 

In this paper, we have considered the SG model complicated by a long-range interaction 
potential of Kac-Baker type. The dispersion relations for phonons and an implicit form for 
topological solitons have been obtained. The width and the energy of the solitons increase 
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as the range of interaction increases. We have also analysed the thermodynamic properties 
of the model in the low-temperature regime. For a given temperature, when the range of 
interaction increases, the specific heat and the internal energy decrease while the entropy 
increases. Such behaviour is understandable if we appeal to the fact that the increases of the 
range of interaction lead to the increase or the wide spread of disorder in the system. In the 
short-range limit (r = 0), our results reduce to that of a SG system with nearest-neighbour 
interactions. 

In the dynamical point of view, we have not considered the localized excitations of 
breather type that exist in the standard SG model. This is because of the mathematical 
dificulties encountered in the long-range interaction model. Moreover, it would be 
interesting to study, for various values of interaction parameter r ,  kink-kink and kink- 
antikink collisions to find whether or not the solitons obtained in the present paper are 
transparent. To this aim, numerical experiments, such as those developed in 1181 to 
investigate the properties of solitons in the Peyrard-Remoissenet non-Iinear deformable 
substrate potential, should be carried out. 

In the thermodynamic domain, our investigations have been limited to the low- 
temperature regime and classical limit where the pseudo-Schrodinger equation and the 
associated WKB approximation are valid. The intermediate and high-temperature behaviours 
(although in this later regime the kinks no longer play a role) are subjects of particular 
interest, as well as the quantum-statistical mechanics of the long-range interaction models. 
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